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The response of a wall boundary layer to  the motion of a convected vortex is 
investigated. The principal cases considered are for a rectilinear filament of strength 
--K located a distance a above a plane wall and convected to the right in a uniform 
flow of speed U z .  The inviscid solution predicts that such a vortex will remain at 
constant height a above the wall and be convected with constant speed a U z .  Here 
a is termed the fractional convection rate of the vortex, and cases in the parameter 
range 0 < a < 1 are considered. The motion is initiated a t  time t* = 0 and numerical 
calculations of the developing boundary-layer flow are carried out for a = 0,0.2,0.4, 
0.55,0.7,0.75 and 0.8. For a < 0.75, a rapid lift-up of the boundary-layer streamlines 
and strong boundary-layer growth occurs in the region behind the vortex; in addition 
an unusual separation phenomenon is observed for a d 0.55. For a 2 0.75, the 
boundary-layer development is more gradual, but ultimately substantial localized 
boundary-layer growth also occurs. I n  all cases, i t  is argued that a strong inviscid- 
viscous interaction will take place in the form of an eruption of the boundary-layer 
flow. The generalization of these results to two-dimensional vortices with cores of 
finite dimension is discussed. 

1. Introduction 
Effectively inviscid flows containing vorticity occur in a wide variety of fluid 

motions of familiar experience. However, relatively little is known about how such 
flows interact with the viscous boundary layers which must be present on all solid 
walls in any real fluid. One such interaction ocurs in the flow over the upper surface 
of a slender delta wing at angle of attack (Harvey 1958; Ornberg 1964); here the 
vortex sheet shed from the leading edge of the wing is rolled up into a vortex above 
the upper surface of the wing. The convected vortex was subsequently observed to 
interact with the boundary-layer flow in the vicinity of the wing surface to induce 
a secondary separation in the form of a recirculating eddy near the wing surface. A 
second example of an interaction is observed between the trailing vortices produced 
a t  the tip of an aircraft wing and the boundary layer formed on the ground. This 
type of flow has been simulated experimentally by Harvey & Perry (1971), who 
mounted a single wing in the test section of a wind tunnel; in order to simulate 
conditions on a take-off or landing, the test section had a moving belt on the floor. 
The trailing vortex created a t  the wing tip convected outboard over the moving belt 
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and was observed to induce a boundary-layer separation in the vicinity of the moving 
belt in the form of a secondary vortex. Ultimately the spawned vortex was ejected 
from the wall region, slowing the horizontal motion of the parent vortex and causing 
it to rise. The secondary vortex is created in an unsteady separation and subsequent 
interaction phenomenon which initiates in the boundary layer; the problem has been 
investigated theoretically by Walker (1978), who obtains close agreement with the 
measured results of Harvey & Perry. Note that the phenomenon is unusual and 
difficult to observe since it develops and takes place in a frame of reference convecting 
with the parent vortex ; consequently, although a number of investigators had noted 
a ‘rebounding’ effect of aircraft vortices as they approached the ground plane, the 
reasons for the phenomenon are only apparent upon close examination of the nature 
of the boundary-layer flow. This particular example is important since there is 
incontrovertible experimental (Harvey & Perry 197 1 )  and theoretical (Walker 1978) 
evidence to show how a parent vortex can induce a boundary-layer separation leading 
to the formation of a secondary vortex. 

In both of the cited examples, a region of concentrated vorticity in an otherwise 
irrotational flow induces an inviscid-viscous interaction in the form of a boundary- 
layer eruption. Situations where the vorticity is continuously distributed in an 
inviscid flow also occur frequently; for example in turbo-machinery, the wake shed 
from each blade row is rotational and can be expected to interact with the boundary 
layers on succeeding blades. A popular technique used to simulate flows having 
a continuous distribution of vorticity is the discrete vortex method summarized by 
Clements & Maull (1975). In  this method, a continuous vorticity distribution is 
represented by a collection of discrete vortices whose positions a t  any time are 
computed using an initial-value integration method ; the main motivation of this 
approach is a hope that the flow field under study may be modelled by a reasonably 
small number of vortices and thus the massive computer storage requirements 
associated with numerical solutions of the Navier-Stokes equation may be avoided. 
Various authors have adopted this approach to investigate the shear layers formed 
on solid surfaces in a viscous fluid (see e.g. Clements & Maull 1975). Normally in such 
studies, vortices are periodically introduced into the flow field a t  flow separation 
points; such points may be readily apparent from the geometry of the problem (e.g. 
downstream corners) or may have to be determined from empirically motivated 
correlations. I n  these approaches, image vortices are produced within the wall or body 
under study in order to produce a vanishing inviscid velocity normal to all solid 
surfaces; however, the no-slip condition for the tangential velocity is not satisfied 
a t  solid walls, and consequently it is tacitly assumed that the boundary layers remain 
thin and passive for all time. It is therefore of interest to determine the effect of 
convected rotational disturbances on a boundary-layer flow. 

Another motivation for the present study is associated with turbulent boundary 
layers. Three-dimensional vortex structures are known to be an important feature 
of turbulent boundary-layer flows (Willmarth 1975; Falco 1977, 1978; Nychas, 
Hershey & Brodkey 1973). The turbulent boundary layer is a composite double layer 
consisting of a relatively thick outer layer and a thin inner wall layer. Convected 
vorticular structures are readily observed in the outer sublayer of the boundary layer; 
on the other hand the wall layer is observed to be in a passive or quiescent state for 
the majority of a particular observation time. This quiescent wall-layer state is 
observed to be cyclically interrupted with an explosive eruption of wall-layer fluid 
into the outer layer in an event usually referred to as the bursting phenomenon. The 
bursting process is the mechanism by which a turbulent boundary layer maintains 
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itself, as new vorticity is continually generated and ejected from the wall region in 
a strong inviscid-viscous interaction with the outer-layer flow. Although Nychas et 
al. (1973) reported that ejections of wall-layer fluid appeared to be associated in some 
way with the passage of vorticular motions in the outer layer, the causes of the 
bursting event are not yet well understood. 

In  this study, the effects of convected rotational disturbances on boundary layers 
will be explored in what perhaps is the most fundamental context (a more complex 
case corresponding to a vortex in a shear flow is discussed by Doligalski, Smith & 
Walker 1980; Doligalski 1980). In  particular, the case of a rectilinear vortex 
convected in a uniform flow above a plane wall will be investigated. The motion is 
assumed to be initiated at time t* = 0, and, for all t* > 0, a thin boundary layer will 
develop and grow on the plane wall. The object of this paper is to investigate the 
expected terminal behaviour of the boundary layer for various convection rates of 
the vortex relative to uniform flow. Specifically, it  is of interest to examine whether 
the boundary layer will remain thin or whether a boundary-layer breakdown may 
be expected at some stage. Here, following Riley (1975), the term breakdown is 
understood to imply a catastrophe with respect to the boundary-layer equations in 
which ‘the notion of a thin boundary layer embedded in an otherwise inviscid flow 
fails ’. Such a breakdown culminates physically in a viscous-inviscid interaction 
between the boundary layer and the outer inviscid flow, and can, in general, be 
expected to modify the inviscid flow substantially. 

In the present study, the vortex has strength - K ,  is located a distance a above 
the wall and is convected with speed aUz in a uniform flow of speed U z ,  The 
fractional convection rate a is decreased by decreasing a or by increasing K ,  and values 
of a in the range [0 ,1 ]  are of interest here. The plan of the paper is as follows. In  
$2 the relevant features of the inviscid flow are discussed; in $3  the boundary-layer 
problem is formulated and the numerical solution procedure is described in $4. In  
$5 calculateci results for a = 0 are discussed. In  $6 the case of a convected vortex 
is addressed and results are presented for a = 0.2, 0.4, 0.55,0.7, 0.75 and 0.8. In  all 
cases, strong boundary-layer growth was observed in the region behind the vortex 
and considerable difficulty was encountered in advancing the numerical solutions 
beyond a certain point in time despite the development of a new numerical scheme. 
In  $7  it is argued that an inviscid-viscous interaction will occur for all convection 
rates. The precise nature of the interaction is not known since it has not proved 
possible to determine the analytical structure of the terminal form of the boundary- 
layer solution (immediately preceding interaction). In  any case, it is suggested that 
the expected interaction will culminate in the creation of a secondary vortex. In 
addition it is argued that the present results for the rectilinear filament may be 
representative of discrete vortex motion in two dimensions. 

2. The inviscid flow 
Consider first the inviscid flow due to a rectilinear vortex of negative rotation - K 

located a distance a from an infinite plane wall a t  y* = 0. The inviscid solution 
(Milne-Thomson 1962, p. 359) predicts that  the vortex will convect t o  the left a t  
constant speed V, = ~ / 2 a  and remain a t  constant height y* = a as i t  moves under 
the influence of the image vortex (of positive rotation + K )  at y* = -a .  If a uniform 
flow of speed U& is superimposed to the right, the vortex convects to the right with 
speed 

v, = uz - K/2U. ( 1 )  
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(c) 
( d )  

FIGURE 1 .  Instantaneous streamlines in the laboratory frame for the inviscid flow for (a )  a = 0.80, 
( b )  a = 0.75, ( c )  a = 0.70, ( d )  a = 0. Also, (d )  represents the streamline patterns for all a in a frame 
of reference convecting with the vortex; the scale of (d )  is 2.5 times larger than in (a)-(c). 

Define a fractional convection rate a as the ratio of the self-induced vortex speed to 
the uniform flow speed, according to 

In  this study the parameter range 0 < a < 1 is of interest,. For a mixed uniform flow 
speed U z ,  the fractional convection rate a decreases as the vortex is moved closer 
to the wall or as the absolute strength of the vortex is increased. The lower limit a = 0 
corresponds to  a vortex which is either strong enough or close enough to  the wall so 
that the self-induced velocity exactly balances the uniform flow speed and the vortex 
is held stationary in a crossflow. I n  the upper limit as a-+ 1,  either K + O  and there 
is no vortex or the distance from the wall and/or the uniform flow speed becomes 
large; in either situation the inviscid flow near y* = 0 is essentially a uniform flow. 

It is worthwhile to consider briefly the physical significance of other values of a,  
although such cases will not be treated explicitly in this study. For a < 0, the vortex 
above the wall y* = 0 is either strong enough or close enough to the wall so that it 
propagates in the negative x* direction upstream against the uniform flow. For a > 1 
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FIGURE 2. Instantaneous inviscid velocity distribution near the wall in the laboratory frame for 
various values of the relative convection speed of the vortex. 

the assumed sense of the rotation of the vortex is reversed and becomes positive; in 
this case the vortex znoves to the right with speed Vc > U z ;  the case a+oO 

corresponds to the case previously investigated by Walker (1978). 
The complex potential describing the inviscid flow a t  any time t* is easily obtained 

(Milne-Thomson 1962), with the result 
z-ia-aUzt* 

w = Uzz+iKlog (3) 

where z is the complex variable x* + iy* ;t here x* measures distance in the streamwise 
direction, and the vortex is assumed to be located a t  x* = 0, y* = a a t  t* = 0. It is 
of interest to examine the nature of the inviscid flow, and in figures 1 (a ,  b, c )  the 
instantaneous flow patterns are plotted for a = 0.8, 0.75, 0.7 respectively. These 
figures are all drawn to the same scale and correspond to the instantaneous flow 
patterns that an observer in the laboratory frame would see at a fixed value oft*. 
In  general for a > 0.75 (figure 1 a )  a stagnation point occurs above the wall, and this 
point approaches the wall as a decreases to  a critical value of a = 0.75 (figure 1 b) .  
As a decreases below the critical value (figure l c ) ,  two stagnation points occur near 
the wall; for decreasing a these points move progressively outboard of the vortex 
centre, and eventually as a+O approach the limiting values of x‘ = f 4 3 a ,  where 

times larger than any of figures 1 (a+); the axes in these figures are x’/a and y* /a ,  
and the asterisk denotes the vortex centre. 

The unsteady inviscid velocity near the wall may be evaluated from (3) (Milne- 
Thomson 1962) and as y*+O the velocity components are such that 

2’ = x*- v t* , as depicted in figure 1 (d) .  Note that the scale of figure 1 ( d )  is 2.5 

4a2(1 -a) 
-= 1 -  v* -to. U* 

U z  x’2+a2 ’ 

The streamwise velocity given by (4a )  is plotted for various values of a in figure 2. 
For a < 0.75, the effects of the vortex are strong enough so that a reversed-flow region 

t The definition of w used here differs from that of Milne-Thomson by a minus sign. 
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bounded by two stagnation points is observed in the laboratory frame near the wall 
in the region immediately below the vortex. I n  all cases the point of minimum velocity 
occurs immediately below the vortex and an absolute minimum of - 3 U& occurs a t  
a = 0. For a = 0.75 the two stagnation points coincide a t  a point directly below the 
moving vortex and no reversed flow occurs near the wall. For a > 0.75, the flow near 
the wall is retarded under the vortex but is always in the positive x* direction. 

In  a frame of reference which convects uniformly with the vortex the inviscid flow 
is steady and the wall moves to the left with velocity - a U z .  The complex potential 
in the convected frame is easily obtained from (3) by superimposing a uniform flow 
equal and opposite to that of the vortex. It is readily verified that for all values of 
a the inviscid flow relative to  the vortex is identical to that depicted in figure 1 ( d ) .  
I n  the convected reference frame, the curve labelled a = 0 in figure 2 describes the 
normalized tangential velocity u*/{(l -a)  U z }  near the wall for all a. It may be 
observed that there is a deceleration in the inviscid flow near the wall, from upstream 
infinity toward what will be termed the front stagnation point ; this stagnation point 
is characterized by flow toward the wall. Behind the front stagnation point a strong 
reverse acceleration occurs to an absolute minimum of - 3 immediately underneath 
the vortex at x* = 0. Behind the vortex centre, the magnitude of the velocity 
decreases monotonically to  zero toward the rear stagnation point; this stagnation 
point is characterized by flow away from the wall. Beyond the rear stagnation point 
a slow acceleration occurs toward downstream infinity. 

The inviscid solution is not uniformly valid and a boundary layer is required to 
satisfy the no-slip condition a t  the wall; this problem is formulated in $3. 

3. The boundary-layer problem 
I n  the present study, the principal interest is in the terminal nature of the 

boundary-layer flow induced by a convected vortex and to  consider the evolution of 
the boundary layer it is necessary to specify an initial condition. Here the simplest 
initial state is considered wherein the wall suddenly enters the flow a t  t* = 0;  
alternatively i t  may be imagined that the effects of viscosity become important 
abruptly a t  t* = 0. This impulsive start initial condition is virtually impossible to 
reproduce experimentally ; however, the main purpose of this study is to determine 
whether or not the boundary layer responds to  the discrete vorticity present in the 
inviscid flow in such a way that a local breakdown of the boundary-layer flow is to  
be expected. The numerical solutions to be described here suggest that  breakdown 
will occur for all values of a ;  consequently the selected initial condition is not 
considered important for demonstrating the basic effect and should be regarded only 
as a convenient mathematical state from which the boundary-layer development may 
be computed forward in time. 

Choosing a Cartesian coordinate system (x*, y*) with corresponding velocity 
components (u*, v*) which convects uniformly with the vortex, the following 
dimensionless boundary -layer variables are defined : 

y = 2/*Re?, t = U z ( l - a ) - ,  
a 

X* 

a ’  a 
x=- 

( 5 )  
U* V* 

U =  V =  Re+, 
U$(a-a)  U z ( 1 - a )  
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where the Reynolds number is defined as Re = (1 -a) U z  a / v ,  with v being the 
kinematic viscosity. The reference velocity (1 -a) U g  in these definitions corresponds 
to the inviscid velocity near the wall far upstream of the vortex as seen by an observer 
in the convected frame. The incompressible equations governing the unsteady 
laminar boundary-layer flow are 

au au au du, a2u au av 
at ax ay dx ay2  ax ay +u-+v- = urn-+--, -+- = 0, - 

where the mainstream velocity is 

4 u =I-- 
x2+1’ 

The boundary conditions associated with (6) are 

(7) m 

I u = - p ,  v = O  at y = O ,  

u+U,(x) as y-fm, 

where a 
P=,_,. (9) 

Here the parameter P represents the ratio of the vortex convection velocity V, to the 
inviscid velocity near the wall a t  upstream infinity in the moving reference frame. 
The initial condition corresponds to abruptly imposing the no-slip condition u = - p  
a t  t = 0. The boundary-layer problem is inherently unsteady, since the flow a t  
upstream and downstream infinity corresponds to  a classical Rayleigh (191 1) problem 
in which the boundary layer continuously thickens proportionally to  ti. The object 
here is to determine whether other phenomena take place in the boundary layer near 
the vortex which lead to much more dramatic boundary-layer growth. 

It is convenient to introduce a new streamwise coordinate defined by the 
Gortler-type transformation 

2 -- - 1--arctanx. 
a‘ 

This transformation is one-to-one and transforms the x-interval ( - 00 , 00) to the finite 
range [ 2 , 0 ]  respectively. I n  Lhe [-coordinate the front and rear stagnation points are 
a t  [ = + and 5 respectively, and the location of the vortex centre is a t  [ = 1. The 
mainstream velocity in (7)  becomes 

u, = 1-Ue([), U e ( [ )  = 2(1-COS7c[). (11) 

An unsteady stream function $([, y, t )  is introduced according to  

which identically satisfies the continuity equation. The boundary layer initially has 
a thickness proportional to ti ,  and it is convenient to introduce Rayleigh variables 
(Blasius 1908; Rayleigh 1911) according to 

2t: !a, 9 , t ) .  (13) 
q = -  Y $ =  

2t4’ 
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The boundary-layer equations (6) become 

and the associated boundary conditions are 

At upstream and downstream infinity (corresponding to 6 = 0 and 2 respectively) 
Ue (6) = 2( 1 - cos x6) + O  and the right-hand side of (14) vanishes; here the boundary- 
layer problem reduces to a Rayleigh-type flow wherein the boundary layer must 
adjust a unit mainstream velocity to  - p  on the wall. The solution to this problem 
is readily obtained, and is 

This is a vortex-sheet flow which provides a smooth transition in the boundary layer 
between the left-moving plate and the right-moving uniform flow. The solution for 
0 < 6 < 2 is to be advanced forward in time numerically; a t  any fixed time, the 
numerical solution in the (6, q)-plane is computed iteratively in a manner similar to 
those associated with boundary-value problems. The solution (17) provides the 
boundary conditions for all t at 6 = 0,2.  

The initial conditions for (14), corresponding to the abrupt insertion of the plate 
in the flow, are obtained using a well-known procedure (Blasius 1908; Walker 1978) 
in which Y is expanded in a power series in time according to  

'y= YO(6,7)+tu:(6,7)+... . (18) 

Upon substitution in (14), a sequence of problems for each function in (18) may be 
obtained. The first term in (18) is 

which provides the initial boundary-layer solution for all 6 a t  t = Of. The second term 
in (1 8) is of the form 

where the functional coefficients g i Z  and g i l  are given explicitly by Doligalski (1980). 
I n  principle i t  is possible to calculate further terms in (18), but the process becomes 
rather tedious and in any case the solution procedure is restricted to small times. To 
extend the solution to larger times i t  is necessary to  calculate the solution of (14) 
numerically, and the finite-difference method is considered next. 
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4. The numerical solution 
I n  the computational method, it is convenient to write the velocity as a linear 

combination of the Rayleigh flow a t  infinity plus a term due to the disturbing vortex 
motion according to 

(21) 

where U,  is given by (17). The boundary conditions for the velocity disturbance U 
follow from (15) and (16), and are 

U(6,O) = 0, U((,7)+1 as y-tco. (22) 

The main motivation for this transformation is that U varies from 0 at the wall to 
1 a t  the boundary-layer edge for all 6;  thus U may be interpreted as a normalized 
velocity which is convenient for computational purposes, particularly for monitoring 
boundary-layer growth as the calculation proceeds. Under the transformation (21), 
(14) becomes 

Here 

s=--- U: , ( l -Ue)+Uk ULf+Ue- . 
2t[ 7c ( 91 
- af = u, Ve( ( )  = 2(1-COS7c5), 
a7 

and f may be termed a vortex-disturbance stream function. 
A rectangular grid in the (6, q)-plane was defined with uniform mesh sizes in the 

(- and 7-directions denoted by h, and h2 respectively; in all cases h, was selected so 
that  mesh lines were a t  6 = 4 and ( = i, which correspond to the streamwise locations 
of the front and rear stagnation points respectively. The second of the conditions (22) 
must be imposed a t  some large but finite value of 7,  say 7 = 1, as an approximation, 
and 1 must be increased until there is no significant change in the solution a t  any 
value oft. Throughout the early stages of the integrations a value of 1 = 6 was found 
to be adequate for all values of /3. However, substantial boundary-layer growth 
eventually occurred for all cases in the vicinity of the rear stagnation point, and i t  
was necessary to increase 1 to 8 and in some cases larger values in the latter stages 
of the integrations. 

A number of different mesh sizes and time steps were used as a check on the 
accuracy, and agreement between successive solutions was excellent. In  the initial 
phases of the motion, variations with time are relatively intense, and a small 
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FIQURE 3. Schematic diagram of the grid structure at a typical mesh point 0 in the (E,q)-plane; 
(a) denotes averaging path for the Crank-Nicolson method, while (6) and (c) are the paths for the 
alternative method. 

time step At was used. Typically the time step was progressively increased from 
At = 0.001 near t = 0 to At = 0.025 for t > 0.025 and then held constant for the 
balance of the integrations. Two sets of mesh sizes for (hl ,  h,) were used, correspond- 
ing to (0.0167, 0.1) and (0.0111, 0.0667). 

Two numerical finite-difference schemes were used to solve (23), and these will now 
be described. In  figure 3 the Southwell notation is used to denote a typical mesh point 
in the (t,  plane at  time t by 0, with the surrounding points labelled 1, 2, 3 and 4; 
corresponding points in the previous time plane are denoted similarly but with an 
asterisk. In both numerical methods the partial differential equation (23) is 
approximated a t  the point labelled 0** in figure 3 which is midway between the points 
0 and O* on the line labelled (a) .  If the right-hand side of (23) is denoted by D,  the 
Crank-Nicolson approximation to (23) is 

where the truncation error is O(At2) ,  with At being the time step. The right-hand side 
of (26) contains first and second derivatives with respect to f [  and 7, which, in the 
usual Crank-Nicolson method (Walker 1978), are approximated with second-order 
central-difference formulae in the current and previous time planes. Consequently the 
overall accuracy of the method is second-order accurate in both space directions and 
time. These difference approximations lead to a difference equation at each internal 
mesh point, and the large set of difference equations is solved using iterative methods. 
Because the difference equations are nonlinear, linearization is necessary at any stage 
in the iteration procedure. The difficulty that may be encountered, particularly when 
the flow field begins to develop intense variations locally, is that the matrix problem 
associated with the iteration procedure may fail to be diagonally dominant as a 
consequence of the central-difference spatial approximations. In  such cases, divergence 
of the iteration procedure usually occurs. In  the present study, substantial difficulties 
were encountered in the latter stages of the integrations as intense variations 
ultimately develop in the boundary layer behind the vortex centre and the rear 
stagnation point (1.67 < 6 < 1.0). Eventually the numerical scheme based on the 
usual Crank-Nicolson method failed to converge. This type of difficulty is often 
experienced with unsteady boundary-layer problems involving separation and 
substantial boundary-layer growth (see e.g. Belcher et al. 1971). To attempt to 
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overcome the problem and extend the integrations to higher times, an alternate 
scheme was developed. 

The alternate method affects only the evaluation of the terms P aU/ar and Q aU/a< 
in (23) ; the method of differencing is similar to an alogorithm known as ‘ MacCormack’s 
method ’ for the computation of time-dependent inviscid supersonic flows (see e.g. 
MacCormack 1969), and has also been used in conjunction with the Keller-box 
method by Cebeci (1979), who refers to the approach as the zigzag method. Consider 
first the term Q i3U/at which is approximated a t  point 0** in figure 3. It can easily 
be shown that an average, taken along any line passing through 0** and composed 
of a simple average of the values on the current and previous time planes, is 
second-order accurate in the time step At. I n  particular, consider the line labelled ( b )  
in figure 3 which intersects the lines connecting the mesh points 0 and 1 and 3* and 
O* in the previous time plane at the midpoints; once the average is taken along this 
line, the derivative a may be approximated with central-difference formulae, and 
the result is 

I n  (27) the coefficient Q,** was evaluated during the iterative procedure using a simple 
average along the line (a) in figure 3. When the current value of QZ* was positive a t  
any stage in the iteration a t  a particular internal mesh point, (27) was used. On the 
other hand if QZ* < 0, the difference approximation is based on an average taken along 
the line labelled ( c )  in figure 3 ,  and this is 

The apparent similarity of this method to  upwind-downwind differencing should be 
noted; however, with averaging carried out along the slanted lines ( b )  and ( c ) ,  the 
difference approximations in (27) and (28) are second-order accurate in both At and 
h,. For the term P aUli37, the approach is similar, giving 

and these approximations are second-order accurate in At and h,. Note that the matrix 
problem associated with these approximations is always diagonally dominant. To test 
the alternative method, calculations were carried out in the early stages of the motion 
using both methods, and the results were virtually identical. However, an important 
feature of the alternate method is that  it allows extension of the numerical 
integrations to larger times beyond the point where the conventional Crank-Nicolson 
method failed. I n  all cases, the method used to integrate ( 2 5 a )  was based on a modified 
Simpson’s rule (Dennis & Walker 1971). 

5. The stationary vortex 
The case of the stationary vortex (a = 0) in a crossflow is considered first ; here the 

image-induced velocity acting to the left is exactly balanced by the freestream 
velocity to the right and the vortex remains stationary a t  constant height above the 
plate. I n  figures 4 ( a d )  the time-dependent development of the streamlines in the 
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(c) 

PIGTJRE 4(a-c). For caption see facing page. 
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FIQURE 4. Instantaneous streamlines in the boundary layer for the stationary vortex (a = 0) at 
(a) t = 0.2, (6) 0.4, (c) 0.65, ( d )  0.7. (Labels correspond to lines of constant Y.)  

boundary layer is illustrated. These plots show the instantaneous streamlines in the 
(6 ,  q)-plane, which is convenient to illustrate the flow patterns over the entire range 
from upstream to downstream infinity. Note, however, that there is a distortion due 
to the transformation (10) in the flow patterns corresponding to a relative compression 
of the far-field flow and an exaggeration of the region below the vortex. 

The streamlines a t  t = 0.2 are depicted in figure 4(a), and it may be observed that 
the flow patterns in the initial stages are almost symmetrical in the boundary layer 
about the vortex centre. I n  this figure and all subsequent streamline plots the labels 
correspond to constant Y-values and the arrows indicate the direction of flow. For 
0 < [ < 0.33 the motion is downward and toward upstream infinity, while, for 
1.67 < 6 < 2, the flow in the boundary layer is inward from downstream infinity and 
upward toward the rear stagnation point. Between the stagnation points in the 
inviscid flow (0.33 < 6 < 1.67) the flow patterns are characterized by downflow near 
the front stagnation point (6 = 0.33) and subsequent upflow near the rear stagnation 
point (6 = 1.67). 

As time passes, the streamlines rapidly begin to lift up in the region behind the 
vortex and begin to develop a kink; at t, = 0.248 an unsteady separation effect in 
the form of a closed recirculating eddy of positive rotation attached to the wall was 
observed to form at tS = 1.344. In  figure 4(b) the flow patterns are illustrated a t  
t = 0.4, a short time after the separation has occurred. The subsequent time-dependent 
development of the eddy is typical of that  observed in the classical separation 
problems which occur behind bluff bodies (see e.g. Dennis & Walker 1972; Collins & 
Dennis 1973) ; immediately following the initial appearance of the closed recirculation 
zone, the eddy grows rapidly in the tangential direction. A period of accelerated and 
rapid growth in a direction normal to the wall then occurs, and the situation at 
t = 0.65 is illustrated in figure 4(c). Shortly after t = 0.65 the Crank-Nicolson 
procedure failed to converge and the calculations could only be carried further in time 
using the alternate fonvard-backward scheme; eventually around t = 0.75 this 
scheme failed to  converge as well. The reason for the failure of the numerical 
procedures can be traced to the intense variations which develop in the boundary 
layer on the right-hand side of the eddy; such variations are evident in figure 4(c) 
and ultimately lead to the behaviour in the numerical solution illustrated in figure 
4(d) a t  t = 0.70. I n  figure 4(d) i t  may be observed that the streamlines near the 
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FIGTJRE 5.  Temporal development of displacement thickness for stationary vortex 
(a = 0). (Labels correspond to values oft . )  

right-hand side of the eddy have begun to develop a spike-like behaviour; a similar 
difficulty was encountered by Walker (1978) on the upstream side of a detached 
separated eddy. The phenomenon illustrated in figure 4 ( d )  is suggestive of the early 
stages of the development of a singular behaviour in the boundary-layer solution. 
A t  the stages of the integrations depicted in figures 4 ( c , d )  the numerical outer 
boundary was a t  1 = 8 ;  from a close examination of the results of the calculations, 
this value appears adequately large, and the thickening of the boundary layer which 
occurs in the vicinity of the eddy does not appear to be the major obstacle to 
continuing the integrations. The main difficulty appears to be associated with the 
developing intense variations on the right side of the eddy. The calculations were 
carried out on a CDC6500; when the integrations were terminated there were 
approximately 2.2 x lo4 points in the mesh, and because of core limitations the mesh 
could not be further reduced. To illustrate the boundary-layer growth further, the 
temporal development of the displacement thickness 6*, defined by 

IS* = s," { 1 -:} dy, 

is illustrated in figure 5. It may be observed that a substantial and accelerating 
thickening of the boundary layer is occurring in the region above the secondary eddy; 
furthermore, in the latter stages of the integrations, 6* is approaching a vertical 
variation in the region near the right-hand side of the eddy. 

It is evident from figures 4 ( d )  and 5 that the boundary layer is entering a phase 
of rapidly strengthening boundary-layer growth. Furthermore, a t  the stages of the 
calculations illustrated in figure 4 ( d )  it  is apparent that  the variations in the flow 
are so severe on the right-hand side of the eddy that the numerical mesh is inadequate 
there. At the same time i t  appears that  a t  this point an interaction between the 
boundary layer and the outer flow is imminent. Consequently the calculations can 
only be carried on further in time (in the limit Re +a) in the context of an appropriate 
rescaling of the Navier-Stokes equations which accounts for the possibility of an 
interaction; discussion of this aspect is deferred to $7 .  

Finally i t  is of interest to examine the development of the eddy. The stagnation 
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points defining the streamwise extent of the eddy spread outward as time increases; 
the positions of the stagnation points form sequences from which it is possible to 
estimate the limiting values. Doligalski (1980) has applied Shanks’ (1955) (see also 
Van Dyke 1975, p. 203) transformation to the sequences, and estimates the large-time 
location of the stagnation points a t  6 = 1.667 and at 6 = 1.097; note that these 
values should be regarded as no more than interesting extrapolations. Thus the rear 
stagnation point of the eddy successively appeared to approach the streamwise 
location of the rear stagnation point of the inviscid flow. To obtain another 
assessment of the limiting location of the eddy front stagnation point, the steady-state 
boundary-layer equations were numerically integrated in the 6-direction from the 
inviscid front stagnation point a t  6 = 0.33, where the solution is given by the Hiemenz 
(191 1 )  stagnation-point solution, toward the rear stagnation point a t  5 = 1.667 using 
a Crank-Nicolson-type integration scheme. These calculations showed that the wall 
shear stress vanished at 6 = 1.06924 which is reasonably close to the estimate of 
1.097 obtained from the results of the unsteady calculations. 

6. The convected vortex 
As the fractional convection rate is increased from a = 0 to progressively higher 

values, the development of the boundary layer gradually changes in character. This 
section is concerned with the effect of a convected vorticular disturbance on the 
boundary-layer development, and, to investigate the range 0 < a < 1 completely, 
results were obtained from a = 0.2, 0.4, 0.55, 0.7, 0.75 and 0.80. It is worthwhile to 
emphasize that the majority of the streamline patterns presented here are relative 
to the vortex, and thus the vortex is towing the developing boundary-layer patterns 
with i t  as i t  moves along the plate. 

The first case considered is a = 0.2, for which the development of the boundary layer 
is illustrated in figures 6 .  Again, i t  may be observed from figure 6 ( a )  a t  t = 0.2 that  
in the initial stages of the motion the flow patterns are almost symmetrical about 
the vortex centre. The streamline labelled -0.02 is a limiting streamline emanating 
from near the forward stagnation point and proceeding to upstream infinity ; on the 
lower branch of this limiting streamline the direction of the flow is to the left from 
upstream infinity a t  6 = 0 to downstream infinity a t  6 = 2. Below the lower branch 
of the limiting streamline, all flow is to  the left, and the arrows on the wall emphasize 
the fact that  the wall is moving to the left in the convected coordinate system. 

As time passes, the streamlines in the region near the wall and behind the vortex 
centre begin to lift up and develop a kink as illustrated in figure 6 ( b )  a t  t = 0.4 in 
a manner similar to that observed for the stationary vortex. At t ,  = 0.424 and a t  
tS = 1.317, qs = 0.297 a boundary-layer separation occurs in the form of a closed 
recirculating eddy of positive rotation. This eddy occurs in the pocket forming 
between the lifting streamlines depicted in figure 6 ( b ) ;  the situation a t  t = 0.6 is 
illustrated in figure 6 ( c ) ,  where the separated eddy is fairly well developed and 
increasingly pushes up the limiting streamline labelled - 0.02. 

It is of interest to examine how the flow development would appear to  an observer 
in the laboratory frame of reference. The streamlines in the laboratory frame are given 
by lines of constant YL, where 

and Yis the stream function in the convected frame. In  figure 6 ( d )  the boundary-layer 
streamlines are plotted in the laboratory frame for the same case and time (a = 0.2, 



16 

n 

T. L. Doligalski and J .  D .  A .  Walker 

0 - &  \____ -0.1 
3 2 E L  - ~ 

2.0 1.67 1.5 E =  1.0 0.5 0.33 0 

L O  
ol-o.02=T< y - 1 -0.06 

. . . 
2.0 1.67 1.5 g =  1.0 0.5 0.33 0 

4 

1) 

2 

1 

0 

(C) 

FIQURE S(a-c). For caption see facing page. 



The boundary layer induced by a convected vortex 17 

FIGURE 6. Instantaneous streamlines in the boundary layer for a = 0.2 : (a )  relative to the vortex 
a t  t = 0.2, ( 6 )  relative to the vortex a t  t = 0.4, (c) relative to the vortex a t  t = 0.6, ( d )  relative to 
the laboratory frame a t  t = 0.6, ( e )  relative to the vortex a t  t = 0.7. (Labels correspond to lines 
of constant Y.)  

t = 0.6) as the view in the convected frame in figure 6(c ) .  It may be observed that 
a secondary recirculation eddy is also visible in the laboratory frame, but that  it 
appears to be larger in extent and centred higher than when viewed in the convected 
frame. Note that apparent separation in the form of a detached eddy occurs first in 
the laboratory frame and is quickly followed by a separation in the convected 
reference frame. 

Just  as in the case of the stationary vortex, intense variations begin to  develop 
in the flow field once the streamwise growth of the eddy is almost complete. This 
behaviour occurs along the right-hand side of the eddy and ultimately leads to the 
onset of a spike-like behaviour in the streamlines; this is illustrated in figure 6 ( e )  a t  
t = 0.7. At this stage the numerical mesh is not small enough to cope adequately with 
the intense variations which have developed on the right-side of the eddy; shortly 
after t = 0.7 the alternate differencing scheme failed to converge and a further 
reduction in the mesh was not practical. 

To illustrate the boundary-layer growth i t  is customary to compute the displace- 
ment thickness. However, in this case i t  is not possible to define a conventional 
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FIGURE 7 ,  Temporal development of displacement thickness parameters for 
a = 0.2. (Labels correspond to values oft . )  

displacement thickness which has meaning for all 6;  this is because the inviscid flow 
has two stagnation points on the wall in the range 0 < a < 0.75. As an alternative, 
it is possible to define a parameter similar to the displacement thickness using the 
normalized velocity defined by (20) according to 

S: = 2t+Jom (1 - U )  dg. 

Note that for the stationary vortex (a = 0) S;F = S*. The temporal development of 
the thickness S;F is illustrated in figure 7 for a = 0.2; it  may be observed that, in a 
manner similar to the stationary vortex, a substantial and accelerating thickening 
of the boundary layer occurs in the region above the spawned eddy. Again S: is 
approaching a vertical variation on the right-hand side of the eddy in the later stages 
of the integration. Note also that the region of accelerating boundary-layer growth is 
somewhat narrower in streamwise extent than for the stationary vortex in figure 5.  

The next case considered is for a = 0.4. The early development of the boundary- 
layer flow is similar to that for a = 0.2, and the situation a t  t = 0.6 is illustrated in 
figure 8. The thickness S: is plotted in figure 9. It may be observed that a separation 
phenomenon similar to that for a = 0.2 also occurs; the principal difference with the 
increased convection rate is that the streamwise extent of the separated eddy (and 
concomitant thickening of the boundary layer) has diminished. Moreover the region 
of expected interaction is being compressed toward the inviscid rear stagnation point. 
This trend continues as illustrated in figure 10, where the flow-pattern development 
for a = 0.55 is given. The lifting streamlines in figure 10 (a)  ultimately yield to a rather 
small separated eddy in figure 10 ( b )  at t = 0.7.  In  figure 10 ( c )  the streamline pattern 
in the laboratory frame is illustrated a t  the same time as the convected view in figure 
10 ( b )  ; an eddy is also observed in the laboratory frame but a t  a different location. 
Finally the numerical method fails and an indication of the reason is given in figure 
l O ( d ) ,  where the streamlines a t  t = 0.8 are plotted; this stage corresponds to a time 
shortly before failure of the calculations. 

I n  figure 11 the streamline patterns for a = 0.7 are plotted in a later stage of the 
calculation. It is possible to carry this computation somewhat further in time, but 
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FIGURE 9. Temporal development of the displacement thickness parameter for 
a = 0.4. (Labels correspond to values oft.)  

again failure ultimately occurs. I n  this case no separation was observed to occur 
(at least until the calculations had to be stopped) but a pronounced kinking of the 
streamlines does take place near the rear stagnation point. Substantial boundary-layer 
growth occurs in the region near the stagnation point, but now in a very narrow band 
in the streamwise direction. 

For a 2 0.75 an important change occurs in the boundary-layer flow. I n  these cases 
no kinking of the streamlines occurs and the integrations may be continued for 
somewhat longer times. The streamlines for a = 0.75 and a = 0.8 are plotted in both 
the convected frame and the laboratory frame in figures 12 and 13. By moving the 
outer boundary to progressively larger values the integrations could be continued 
longer than for the cases of a < 0.75, but ultimately substantial boundary-layer 
growth also occurs. This growth is not readily apparent from the streamline patterns 
illustrated in figures 12 and 13, and, to illustrate this feature, a conventional 
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FIGURE 11.  Instantaneous streamlines in the boundary layer for a = 0.7 at t = 1.0: (a) relative to 
the vortex; (b) relative to the laboratory frame. (Labels correspond to values of constant Y.)  
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displacement thickness is defined with respect to the velocity in the laboratory frame 
according to 

(33) 

The temporal development of S* is plotted in figure 14 for a=0.8,  where the 
accelerated boundary-layer growth near the rear stagnation point should be noted. 
The displacement effect illustrated in figure 14 corresponds to the effect that an 
observer in the laboratory frame would see at fixed values of time. Note that in the 
laboratory frame the effect could be interpreted as a moving wave of growing 
amplitude. 

Finally it is worthwhile to emphasize that, while it has been convenient to present 
the flow patterns in the ( E ,  7)-plane, some distortion occurs in the streamwise direc- 
tion. In  figure 15 the streamline patterns in the convected frame for a = 0.8 are 
plotted for the time illustrated in figure 13 (a)  in the physical (z, 7)-plane. Comparison 
of figures 13(a) and 15 is useful to gain an appreciation of the distortion in the 
g-coordinate ; basically the region between the inviscid stagnation points is magnified 
while the regions a t  upstream and downstream infinity are compressed. 
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FIGURE 15. Instantaneous streamlines in the boundary layer relative to the vortex in the physical 
streamwise scale for a = 0.8 at t = 1.1 .  (Labels correspond to lines of constant Y.) 

7. Discussion of results 
In  view of the calculated results of $6, it is reasonable to conclude that the unsteady 

boundary layer induced by a convected vortex in a uniform flow will eventually 
interact strongly with the outer inviscid flow for any convection speed. The 
boundary-layer development depends on the value of the fractional convection rate 
a and a rate of a = 0.75 corresponds to a critical situation. For convection rates such 
that a < 0.75, a lifting and subsequent kinking of the streamlines always occurs in 
the region behind the vortex. For values of a < 0.55, a separation phenomenon in 
the form of a separated detached eddy was observed to initiate near the wall in the 
pocket formed by the kinking streamlines. Once separation occurs the eddy grows 
rapidly in the direction normal to the wall and very intense variations begin to 
develop on the right-hand side of the eddy. In the latter stages of the integrations, 
a spike-like behaviour begins to develop in the streamlines, and the calculations 
cannot be continued; evidently the flow is close to an inviscid-viscous interaction 
at  this point. The eddy that is created in the boundary layer is in all cases of positive 
rotation (which is opposite to the parent vortex in the inviscid flow). As a increases, 
the relative width of the boundary-layer eddy diminishes and the region of strong 
boundary-layer growth narrows toward the rear stagnation point. Finally for a = 0.7 
no separated zone was observed, although severe kinking of the streamlines in a very 
narrow region near 5 = 1.67 occurred. In all cases, where separation and/or streamline 
liftup and kinking occurs, an abrupt and rapid thickening of the boundary layer takes 
place. On the other hand, for a > 0.75, the development of the boundary-layer flow 
is somewhat more gradual, and the integrations could be carried on to relatively larger 
times ; however, again substantial boundary-layer growth ultimately occurs in the 
region behind the vortex. 

The principal difference between the two regimes can be understood as follows. The 
boundary-layer flow in the convected reference frame is subject to two influences, 
namely the inviscid flow near the wall and the effect of wall moving to the left. With 
reference to the dimensionless variables in (6)-(9), it  may be confirmed that the 
maximum velocity is - 3 at fl  = 1 immediately below the vortex centre ; the velocity 
of the wall to the left is -p. For a < 0.75, p < 3 and the maximum velocity in the 
inviscid flow is greater than the wall speed. Consequently in such cases the inviscid 
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flow exerts a dominant effect, and the relative streamlines in the boundary layer are 
lifted behind the vortex even near the wall; this process may be thought of as a 
reaming action by the vortex on the boundary layer. Note, however, that, as the rear 
stagnation point is approached from the right, the magnitude of the inviscid velocity 
decreases and the moving wall begins to exert the dominant effect ; it may be observed 
for example in figure 10(b)  that the boundary-layer fluid near the wall and near 
6 = 1.67 is not lifted but is dragged to the left. Thus for a < 0.75 a kink develops 
in the lifted streamlines, and subsequently a separated eddy occurs in the flow in most 
cases. On the other hand, for a > 0.75, /3 > 3 and the wall moves to the left a t  a 
greater rate than any speed in the inviscid flow. In  these cases, the left-moving wall 
exerts the dominant effect near the wall and no kinking of the streamlines occurs. 
However, the flow in the outer part of the boundary layer is exposed to an outflow 
stagnation-point flow a t  6 = 1.67, and this ultimately leads to substantial boundary- 
layer growth but now in a very narrow band in the streamwise direction. 

For all cases considered, the results suggest that the local thickening of the 
boundary layer will continue to accelerate, and once the thickness of the layer 
becomes comparable to the lengthscale of the outer flow, breakdown of the classical 
thin boundary-layer picture will occur in the form of an inviscid-viscous interaction. 
The precise nature of the interaction is not known, and further progress is impeded 
by ignorance of the terminal form (immediately before breakdown) of the boundary- 
layer solution. However, the calculated results are suggestive of the early stages of 
the formation of a singular behaviour a t  finite time and appear to be qualitatively 
similar to some of the notions behind the Moore-Rott-Sears model of unsteady 
separation. This model was originally proposed by Sears & Telionis (1975) as a general 
model of unsteady separation; in the MRS model the separation point is defined as 
that location where the velocity and shear stress vanish in a singular manner as seen 
by an observer moving with the separation. Note that this definition implies the 
classical idea of breakdown, since, once a singularity begins to evolve in the 
boundary-layer solution, changes in the outer inviscid flow must begin to take place. 
A number of attempts have been made to substantiate the MRS model (Sears & 
Telionis 1975 ; Williams 1977) by computation of various unsteady boundary-layer 
flows, particularly the impulsively started circular cylinder (Belcher et al. 1971 ; 
Collins & Dennis 1973, Cebeci 1979, Ece, Walker & Doligalski 1983). Until recently 
the implications of these numerical studies have been controversial because of 
difficulties similar to those encountered here; once detached eddies occur in the 
boundary-layer flow, intense variations in the velocity field begin to develop near the 
eddy and it becomes increasingly difficult to maintain good accuracy in the numerical 
solution; consequently whether or not an MRS condition and a singular behaviour 
develop at finite time has been a matter of some debate. Recently, the first rational 
account of the terminal nature of the boundary-layer flow for an impulsively started 
cylinder has been given by Van Dommelen (1981) and Van Dommelen & Shen (1980), 
who also calculate a numerical solution but in Lagrangian coordinates (see also Elliot, 
Cowley & Smith 1983). These studies support the MRS condition as the appropriate 
condition for boundary-layer breakdown and demonstrate that a singularity does 
occur in the boundary-layer solution a t  finite time. 

In  the present numerical results, the boundary-layer solution does appear to be 
evolving toward an MRS condition, a t  least for a < 0.75. It may be observed in 
figures 4 (c), 6 ( c ) ,  8, 10 ( b )  and 11 that the streamlines in the boundary layer near the 
upstream side of the detached eddies are ultimately deflected in a direction which 
is almost normal to the wall; the flow patterns near these eddies are of the type 
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sketched by Van Dommelen (1981) (figure 21, p. 237) for the expected streamlines 
near an MRS point corresponding to a downstream-moving wall. Although the 
numerical results are suggestive that an MRS condition will ultimately occur, there 
is a t  present no confirming analytical evidence for a singularity at  finite time in the 
present study. On the other hand, the indication that the flows for all a are 
approaching an interactive phase is strong ; unfortunately the methods required to 
treat strong inviscid-viscous interactions are not known and for the present it is only 
possible to speculate on the nature of the expected interaction. A t  the lower 
convection rates, it appears likely that the eddy spawned in the boundary layer will 
be ejected in a manner similar to that observed by Harvey & Perry (1971). As a 
increases beyond 0.75, the integrations suggest the boundary layer may erupt in a 
jet-like manner. This conjecture is supported by the experiments of Doligalski et al. 
(1980) for a vortex with a = 0.9 convecting over an established flat-plate boundary 
layer; in these experiments the erupting fluid subsequently appeared to be rolled over 
into another vortex. 

In this study an impulsive-start initial condition was used and a question that arises 
is whether or not the impulsive start could be the cause of the breakdown. Such an 
initial condition cannot be exactly duplicated in the laboratory and was chosen here 
as a convenient initial state that involves no initial disturbance to the inviscid flow. 
Other initial conditions may be considered corresponding, for example, to a gradual 
imposition of the mainstream velocity; in such cases the initial flow in the boundary 
layer is again almost symmetrical (see e.g. figure 4a) .  The point is that the intense 
variations and detached eddies that occur in the present calculations appear only after 
the boundary layer is exposed to the action of the vortex for a period of time. Thus 
it is the effect of the vortex that is believed to drive the boundary-layer flow toward 
interaction rather than the particular initial flow. 

It is of interest to briefly examine the possible relevance of the present study to 
bursting in fully developed turbulent boundary layers. The mean-velocity profile in 
the outer layer of a nominally steady two-dimensional turbulent boundary layer is 
a uniform flow to leading order (Fendell 1972) combined with a lower-order shear 
flow ; consequently a t  locations remote from the wall the composite mean profile is 
a weakly sheared uniform flow. Convected discrete vorticular motions are observed 
to be an important feature of the outer-layer flow (Falco 1977, 1978, 1982; Head & 
Bandyopadhyay 1981). The apparently active vortices near the wall are believed to 
have a typical lengthscale of the order of 100 wall-layer units; these convected 
vortices are three-dimensional and are more complex than the two-dimensional 
filaments discussed in this paper. Indeed all real vortices are three-dimensional 
(Lighthill 1963) and a two-dimensional vortex can only be viewed as a mathematical 
idealization of a portion of three-dimensinal filament. It has previously been 
suggested by various authors (Nychas et al. 1973; Doligalski et al. 1981) that vortex 
motions can play a role in triggering the observed eruptions of fluid from the wall- 
layer region. The results of the present study suggest how this might occur. When 
a convected vortex is strong enough and/or close enough to the wall, an unsteady 
viscous effect is induced in the viscous region near the wall ; as the vortex convects 
downstream it carries a separating region with it. Ultimately the effect builds in 
intensity and an eruption into the outer layer occurs. This conjectured type of cyclical 
process offers a possible explanation of how new vorticity is continually introduced 
into the outer layer. However, the phenomena and vortex motions in a turbulent flow 
are more complex than the physical situations considered in this paper ; for this reason 
the physical mechanism for regeneration proposed here requires further study. 
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Finally, the calculations in the present study have been carried out for a rectilinear 
filament, and it is of interest to inquire whether the present results have wider 
applicability to vortex motions in two dimensions. The rectilinear vortex represents 
one limit of vortex motion in which the vorticity is highly concentrated in a small 
core region. Batchelor (1967, p. 534) has described the other possible limit of 
two-dimensional vortex motion in which the vorticity is distributed over a finite area 
in the inviscid region. If ( r ,  0 )  are polar coordinates measured from an origin on an 
infinite plane wall, a stream function + can be defined in the usual way and a solution 
of the inviscid equations that has zero vorticity for r > e and vorticity proportional 
to $ for r < e is 

Here J ,  and J ,  are Bessel functions a n d j  = A t / e ,  where A, is the ith zero of J,. This 
solution represents a vortex embedded in a uniform flow having speed U ,  a t  infinity 
with vorticity spread over the half-circle r = e. If the wall is now imagined to move 
to the left, then an observer on the wall would see a vortex of negative rotation moving 
to the right. A variety of solutions are possible corresponding to the particular value 
of hi chosen. Consider the first zero given by A, = 3.8317; it may easily be verified 
that the single-celled vortex corresponding to this case produces a streamline pattern 
very similar to that illustrated in figure 1 (d) for the rectilinear filament. The vortex 
centre is at  r, = 0.48e, and the stagnation points occur on the wall at  x = f2.09r0 
as opposed to f 1.73a for the rectilinear filament. Rather than a = 0.75, the critical 
value for this vortex may be shown to be 01 = 0.713. Because of the close similarity 
in the inviscid flows, the boundary layer is expected to respond in a very similar 
manner for this type of vortex. Lastly it is of some interest to note that vortices having 
cells of alternating rotation may be obtained by taking high-order zeros At in (34); 
such vortices have multiple outflow stagnation points near the wall and presumably 
would be able to induce multiple boundary-layer eruptions. 

The authors are grateful for support of this study by the Air Force Office of 
Scientific Research under contract no. F49620-78-C-007 1. 
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